Data Tables, Dałes, and Time

Presented by Wayne Wilmeth

Data Tables

One Variable Dała Tables
Two Variable Data Tables
Break Even Dała Table

One Variable Data Table

Show the Possible Outcomes as you Vary a Single Data Cell

Structure of a One Variable Data Table

Structure of One Variable Data Table

These are the variables you wish to test. In this example they are the Units Sold. Each value in the column will be run through the cell containing our Units Sold (B6) to see what the corresponding Profit would be. B6 is our Column Input Cell because our variables are in a column and they will be substituted into cell B6.

1	A	B	C	D	E
1	What Would Profit be for Different Units Sold?				
2	Assume Price is Steady at \$33				
3					
4				Units	Profit
5	Price	\$ 33.00			\$ 1,600.00
6	Units Sold	\$ 200.00		-	
7	Revenue	\$ 6,600.00		50	
8	Cost Per Unit (\$15)	\$ 15.00		100	
9	Variable Cost	\$ 3,000.00		150	
10	Fixed Costs (\$2,000)	\$ 2,000.00		200	
11	Total Costs	\$ 5,000.00		250	
12	Profit	\$ 1,600.00		300	
13				350	
14				400	
15				450	

This is the formula (or a link to the formula) that returns the results you are after. In this example it is the Profit formula in B12 so we would type: =B12

Exercise 1: One Variable Data Table - Units Vary

Find Profits for Various Units Sold

	A	B	C	D	E
1	What Would Profit be for Different Units Sold?				
2	Assume Price is Steady at \$33 and Start with Units Sold at 200.				
3					
4				Units	Profit
5	Price	\$ 33			=B12
6	Units Sold	200		-	
7	Revenue	\$ 6,600.00	= $\mathrm{B} 5^{*} \mathrm{~B} 6$	50	
8	Cost Per Unit (\$15)	\$ 15.00		100	
9	Variable Cost	\$ 3,000.00	= $\mathrm{B6}$ * B 8	150	
10	Fixed Costs (\$2,000)	\$ 2,000.00		200	
11	Total Costs	\$ 5,000.00	$=B 9+B 10$	250	
12	Profit	\$ 1,600.00	=B7-B11	300	
13				350	
14				400	
15				450	

Part 1

Fill out the Spreadsheet as shown.

Exercise 1: One Variable Data Table - Vary Units

Find Profits for Various Units Sold

Part 2

a.) Highlight D5:E15
d.) Click "OK".

Cost Per Unit (\$15)

Fixed Costs $(\$ 2,000) \quad \$ 2,000.00$
Total Costs $\quad \$ 5,000.00$

Profit be for Different Units Sold?
ice is Steady at \$33 and Start with Units Sold at 200

	Units	Profit	
\$ 33		\$	1,600.00
200	-	\$	$(2,000.00)$
\$ 6,600.00	50	\$	$(1,100.00)$
\$ 15.00	100	\$	(200.00)
\$ 3,000.00	150	\$	700.00
\$ 2,000.00	200	\$	1,600.00
\$ 5,000.00	250	\$	2,500.00
\$ 1,600.00	300	\$	3,400.00
	350	\$	4,300.00
	400	\$	5,200.00
	450	\$	6,100.00

b.) From the menu click: "Data - What If Analysis - Data Table".
c.) Set the "Column input cell" to B6 (Units Sold) and click "OK".

You should get the profits shown to the left. It tells you what your profits would be for each value of Units.

Student Exercise: Show Profit for Various Profits

Show what the Profits would be if you Vary Price

	A	B	C	D		E
1	What Would Profit be for Different Prices?					
2	Assume Units Sold is Steady at 500 and start with a Price of \$15.					
3						
4				Price		Profit
5	Price	\$ 15			\$	(2,000.00)
6	Units Sold	500		15	\$	$(2,000.00)$
7	Revenue	\$ 7,500.00		16	\$	$(1,500.00)$
8	Cost Per Unit (\$15)	\$ 15.00		17	\$	(1,000.00)
9	Variable Cost	\$ 7,500.00		18	\$	(500.00)
10	Fixed Costs (\$2,000)	\$ 2,000.00		19	\$	-
11	Total Costs	\$ 9,500.00		20	\$	500.00
12	Profit	\$ (2,000.00)		21	\$	1,000.00
13				22	\$	1,500.00
14				23	\$	2,000.00
15				24		2,500.00

Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits

	A	B	C	D	E	F
1	Retirement Planning: FV(Rate/12,Months,Deposits)					
2						
3					No Investing	Investing
4	Monthly Deposit	10			\$3,600.00	\$6,940.49
5	Years Until Retirement	30		100	\$ 36,000	\$ 69,405
6	Expected Monthly Avg Rate	4\%		125	\$ 45,000	\$ 86,756
7				150	\$ 54,000	\$ 104,107
8				175	\$ 63,000	\$ 121,459
9				200	\$ 72,000	\$ 138,810
10				225	\$ 81,000	\$ 156,161
11				250	\$ 90,000	\$ 173,512
12				275	\$ 99,000	\$ 190,864
13				300	\$ 108,000	\$ 208,215
14				325	\$ 117,000	\$ 225,566
15				350	\$ 126,000	\$ 242,917

Determine how much money you would have in 30 years by depositing a specific monthly amount.

Show one column if you simply hid it under your mattress (12*30*Monthly deposit)

And another column if you invested it at 4\%.
=FV(Rate,Periods,Pmt Amount)

Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits

A	A	B	C	D	E	F
1	Retirement Planning: FV(Rate/12,Months,Deposits)					
2						
3					No Investing	Investing
4	Monthly Deposit	10			=B5*12*B4	=-FV(B6/12,B5*12,B4)
5	Years Until Retirement	30		100		
6	Expected Monthly Avg Rate	4\%		125		
7				150		
8				175		
9				200		
10				225		
11				250		
12				275		
13				300		
14				325		
15				350		

Part 1

Type the formulas shown in E4 and F4.

Exercise 2: One Variable, Two Formulas

Show Future Value for Various Monthly Deposits

	A	B	C	D	E	F
1	Retirement Planning: FV(Rate/12,Months,Deposits)					
2						
3					No Investing	Investing
4	Monthly Deposit	10			\$3,600.00	\$6,940.49
5	Years Until Retirement	30		100		
6	Expected Monthly Avg Rate	4\%		125		
7				150		
8				175		
9				200		
10				225		
11				250		
12				275		
13				300		
14				325		
15				350		

Part 2

a.) Highlight D4:F15
b.) From the menu click:

Data - What If Analysis - Data Table...

c.) Set the Column Input Cell to B4.
d.) Click "OK".

You should get the results shown on the first slide of this exercise.

Two Variable Data Table

Show the Possible Outcomes as you Vary Two Data Cells

Structure of a Two Variable Data Table

Formula Whose Results You wish to Display

This corner of the structure must contain either the formula whose results you wish to display or a link to the cell containing the formula whose results you wish to display. For example, it might be a formula that returns Profit for given Prices and Units Sold.

Row Variable List

This is a list of the different values you wish to substitute into a cell that the formula in the right corner references. For example, if the cell in the right corner returns profit, this row might contain Unit Price. Row variables should be values as formulas can produce incorrect results if they reference the same celled used to produce your results.

Column Variable List

This is a list of the different values you wish to substitute into a cell that the formula in the right corner references. For example, if the cell in the right corner returns Profit, this row might contain Units Sold. Column variables should be values as formulas can produce incorrect results if they reference the same celled used to produce your results.

Exercise: Two Variable Data Table

Show Future Value for Various Monthly Deposits and Various Rates

	A	B	C	D	E	F	G	H	I	J	K	L
1	Two Variable Data Table: FV as Deposits and Rate Varies											
2	Deposits are Monthly for 30 Years in Equal Amounts											
3												
4	Monthly Deposit	-100		\$69,404.94	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%
5	Years Until Retirement	30		-100	\$ 49,273	\$ 58,274	\$ 69,405	\$ 83,226	\$100,452	\$121,997	\$149,036	\$183,074
6	Expected Monthly Avg Rate	4\%		-125	\$ 61,591	\$ 72,842	\$ 86,756	\$104,032	\$125,564	\$152,496	\$186,295	\$228,843
7	Value at Retirement (FV)	\$69,404.94		-150	\$ 73,909	\$ 87,411	\$104,107	\$124,839	\$150,677	\$182,996	\$223,554	\$274,612
8				-175	\$ 86,227	\$101,979	\$121,459	\$145,645	\$175,790	\$213,495	\$260,813	\$320,380
9				-200	\$ 98,545	\$116,547	\$138,810	\$166,452	\$200,903	\$243,994	\$298,072	\$366,149
10				-225	\$110,863	\$131,116	\$156,161	\$187,258	\$226,016	\$274,493	\$335,331	\$411,917
11				-250	\$123,181	\$145,684	\$173,512	\$208,065	\$251,129	\$304,993	\$372,590	\$457,686
12				-275	\$135,499	\$160,253	\$190,864	\$228,871	\$276,242	\$335,492	\$409,849	\$503,454
13				-300	\$147,818	\$174,821	\$208,215	\$249,678	\$301,355	\$365,991	\$447,108	\$549,223
14				-325	\$160,136	\$189,389	\$225,566	\$270,484	\$326,467	\$396,491	\$484,367	\$594,992
15				-350	\$172,454	\$203,958	\$242,917	\$291,291	\$351,580	\$426,990	\$521,626	\$640,760

Exercise: Two Variable Data Table

Show Future Value for Various Monthly Deposits and Various Rates

Exercise: Two Variable Data Table

Show Future Value for Various Monthly Deposits and Various Rates

Part 2

a.) Highlight D4:L15.
b.) From the menu:

Data - What If Analysis Data Table...
c.) Set Row Input Cell to: B6 Set Column Input Cell to B4
d. Click "OK".

Data Table	8 x	
Row input cell:	SBS6	[區]
Column input cell:	SBS4	洭

	A	B	C	D	E	F	G	H	1	J	K	L
1	Two Variable Data Table: FV as Deposits and Rate Varies											
2	Deposits are Monthly for 30 Years in Equal Amounts											
3												
4	Monthly Deposit	-100		\$69,405	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%
5	Years Until Retirement	30		-100								
6	Expected Monthly Avg Rate	4%		-125								
7	Value at Retirement (FV)	\$69,404.94		-150								
8				-175								
9				-200								
10				-225								
11				-250								
12				-275								
13				-300								
14				-325								
15				-350								

You should get the results shown on the first page of this exercise.

Using Data Tables (and some algebra) for a Break Even Analysis

What is Break Even Analysis?

The Point where your Sales Cover your Expenses

	A	B	C	D
1	Break Even Analysis (Profit Goes to 0)			
2	If we produced 100 units, what price must we sell them at to break even?			
3	If Price is $\$ 25$, how many units must we sell to break even?			
4				
5	Price	25		
6	Units Sold	100		
7	Revenue	\$ 2,500.00		
8	Cost Per Unit (\$15)	\$ 15.00		
9	Variable Cost	\$ 1,500.00		
10	Fixed Costs (\$2000)	\$ 2,000.00		
11	Total Costs	\$ 3,500.00		to Zero
12	Profit	\$ (1,000.00)		-

- For a given price, how many units must you sell to break even?

Or

- For a given number of units sold, what price must you charge to break even?

Exercise: Find Breakeven Prices for Various Units Sold

Using a One Variable Data Table

	A		B	C	D	E
1	Break Even Analysis (Profit = 0)					
2	What Should Price be to break even if we vary Units?				Units Varied	
3					Units	Prices Are:
4			Varied			\$55.00
5	Price	\$	55.00		50	\$55.00
6	Units Sold		50		100	\$35.00
7	Revenue	\$	2,750.00		150	\$28.33
8	Cost Per Unit (\$15)	\$	15.00		200	\$25.00
9	Variable Cost	\$	750.00		250	\$23.00
10	Fixed Costs (\$2000)	\$	2,000.00		300	\$21.67
11	Total Costs		2,750.00		350	\$20.71
12	Profit	\$	-		400	\$20.00
13					450	\$19.44
14					500	\$19.00

We wish to generate a list of breakeven Prices for the Units listed. For example, at 300 Units the breakeven price is \$21.67.

This example has two main requirements:
Part One: Building the Model
Create a model where typing almost any number in Units Sold will cause the formula in Price to return a value that causes the formula in Profit to return zero.

Part Two: Use of a One-Variable Data Table to generate Prices.

Exercise: Find Breakeven Prices for Various Units Sold

Algebraically Forcing Profit to Go to Zero when Units Sold Varies (Finding Price)

Price and Units Sold are both variables that affect Profit. If we state any value for Units Sold there is almost always a corresponding value we can assign to Price to make Profit go to zero.
Profit = Price * Units - Variable Cost Per Unit * Units - Fixed Costs

	A		B
4			
5	Price	\$	25.00
6	Units Sold		500
7	Revenue	\$	12,500.00
8	Cost Per Unit (\$15)	\$	15.00
9	Variable Cost	\$	7,500.00
10	Fixed Costs (\$2000)	\$	2,000.00
11	Total Costs	\$	9,500.00
12	Profit	\$	3,000.00

If we set Profit to Zero and Solve for Price, the equation will return the Price we need to charge for any given number of Units.

usc Marshall

Exercise: Find Breakeven Prices for Various Units Sold

Part One: Setting Profit to Zero and Solving for Price

Note that if you want Break Even Units, use this Formula:

Exercise: Find Breakeven Prices for Various Units Sold

Part one: Formula in Price sets Profit to Zero if Value in Units Sold Changes

	A	B	C	1. Copy the data from the previous exercise and edit it as shown. (Formula in B5 is the only difference.)
1	Break Even Analysis (
2	What Should Price be to break even if we vary Units?			
3				
4				
5	Price	\$35	= $\mathrm{B} 8+(\mathrm{B} 10 / \mathrm{B6})$	2. Type a value in Units Sold (B6). Price should update to force Profit to remain at zero.
6	Units Sold	\$100	-	
7	Revenue	\$3,500	=B5*B6	
8	Cost Per Unit (\$15)	\$15		
9	Variable Cost	\$1,500	= $\mathrm{B} 8 * \mathrm{B6}$	
10	Fixed Costs (\$2000)	\$2,000		
11	Total Costs	\$3,500	= $\mathrm{B9}+\mathrm{B10}$	
12	Profit	\$0	=B7-B11	

Exercise: Find Breakeven Prices for Various Units Sold

Creating the Data Table Structure (Units Sold Varies)

Exercise: Find Breakeven Prices for Various Units Sold

Creating the Data Table Structure (Units Sold Varies)

Exercise: Find Breakeven Prices for Various Units Sold

Find Breakeven Prices for Various Units Sold (Solution)

,	A	B	C	D	E
1	Break Even Analysis (Profit = 0)				
2	What Should Price be to break even if we vary Units?				
3				Units Varied	
4				Units	Prices Are:
5	Price	\$35			\$35.00
6	Units Sold	\$100		50	\$55.00
7	Revenue	\$3,500		100	\$35.00
8	Cost Per Unit (\$15)	\$15		150	\$28.33
9	Variable Cost	\$1,500		200	\$25.00
10	Fixed Costs (\$2000)	\$2,000		250	\$23.00
11	Total Costs	\$3,500		300	\$21.67
12	Profit	\$0		350	\$20.71
13				400	\$20.00
14				450	\$19.44
15				500	\$19.00

Excel will produce the price that will set profit to zero for each given number of units.

Note that if you type in different Units in column D your Prices will update to give you the corresponding break even price.

Working With Dates

(Workshop Designed for Excel for Windows Default 1900 Date Schema)

Why Use Dates \& Times in Excel?

	A	B
1	Purchase Date	$10 / 15 / 2015$
2	Date Delivered	$10 / 22 / 2015$
3	Turnaround Days	7

	A	B
1	Purchase Date	5/8/2020
2	Due Date End of Following Month	6/30/2020

A	B
Recognized	
as Text	Recognized as a Date or Time
10:45AM	$10: 45$ AM
Jan 1-2015	1-Jan-2015

You can do Math with them:
=B2-B1

You can manipulate them with functions: =DATE(YEAR(BI),MONTH(BI)+2,0)

How you type in dates and times in Excel determines whether they are recognized as dates \& times or not.

Date Exercise 1

Correctly Typing in Dates

	A	B	C	D
1	Type the Following Dates in the Yellow Areas			
2				
3	Type 1/1/1900	1/1/1900		
4	Type 1/1/30	1/1/1930		
5	Type 1/1/29	1/1/2029		
6	Type 1/1/2030	1/1/2030		
7	Type 1/1/1929	1/1/1929		
8	Type Control;	7/8/2015		
9				

Next: Format as "Comma"
Now format the dates you typed as "comma" format. Note you get large numbers.

	A	B	C	D
1	Type the Following Dates in the Yellow Areas			
2				
3	Type 1/1/1900	1.00		
4	Type $1 / 1 / 30$	$10,959.00$		
5	Type $1 / 1 / 29$	$47,119.00$		
6	Type 1/1/2030	$47,484.00$		
7	Type $1 / 1 / 1929$	$10,594.00$		
8	Type Control ;	$42,193.00$		
0				

How Excel Stores Dates

Dates are Stored as Numbers

$1 / 1 / 1900$	$5 / 8 / 1930$	$2 / 4 / 1968$	$1 / 1 / 2000$	$12 / 21 / 2012$
1	11,086	24,872	36,526	41,264

Dates Typed in Cells using the Formats Below are Recognized by Excel as Dates

$12-15-2010$	$12 / 15 / 2010$	December 15,2010	Dec 15,2010	15-December-2010
$12-15-10$	$12 / 15 / 10$	December 15,10	Dec 15,10	15-Dec-2010

Note: If Typing just Two Digits (instead of 4) for the Year there is a Breakpoint at 30
Typing $1 / 1 / 29$ is seen as $1 / 1 / 2029<30$ is seen as the current century
Typing $1 / 1 / 30 \quad$ is seen as $1 / 1 / 1930 \quad>=30$ is seen as previous century

Date Exercise 2: Difference Between Dates

Simple Subtraction: Answer Expressed in Days

DateDif(StartDate,EndDate,"Units")

Subtracts Dates and Expresses the Result in the Units Specified

Note that DateDif() does not appear in the Insert Function Box but comes with Excel.

Date Exercise 2B: Difference Between Dates

Using DateDif(Start Date, End Date, "units")

Subtracts two Dates with Results Expresses in Units Specified.

UNITS

These unit specifications below return the difference in completed years, months, or Days.

Units	Description (Total Years, Months, or Days)	Example	Results
" $\mathbf{Y "}$	Number of Complete Years Between two Dates	$=\operatorname{DateDif(B1,B2,"Y")~}$	$\mathbf{3}$ years
"M"	Number of Complete Months Between two Dates	$=\operatorname{DateDif(B1,B2,"M")}$	$\mathbf{3 8}$ months
"D"	Number of Days Between Two Dates	$=D a t e \operatorname{Dif}(B 1, B 2, " D ")$	$\mathbf{1 1 6 2}$ days

Notes:

- DateDif() does not appear in Excel "Insert Function" area (Shift + F3).
- The End Date must be more recent than the Start Date.
- "Complete" means that an entire month or year has gone by. For example, DateDif() with "M" units, a start date of $4 / 25 / 2015$ and end date of $5 / 10 / 2015$ returns zero months because not a complete month has passed. In other words, it does not just subtract the 4 from the 5 and return 1, it looks at the entire date.

usc Marshall

DateDif() Exercise A

DateDif(StartDate,EndDate,"Units") \rightarrow "Y", "M", and "D"

	A	B	C
1	Find the Difference Between the Dates in Years, Months, \& Days		
2	Use DateDif(StartDate,EndDate,"Units")		
3			
4	Start Date:	6/20/2015	
5	End Date:	8/2/2018	
6			
7	Years "Y"	3	=DATEDIF(B4, $55, \mathrm{Y}{ }^{\text {" }}$)
8	Months "M"	37	=DATEDIF(B4,B5,"M")
9	Days "D"	1139	=DATEDIF(B4,B5,"D")
10			

DateDif() Exercise B: Months Remainder

Using DateDif(Start Date, End Date, "units")

"YM"
Returns the number of remaining Months between two dates as if they years were in the same year. "YM" is useful for finding any remaining months after whole years as you will never get an answer greater than 11.

Example Dates		Formula	Result	Description
A		B		R

* Because the Start Date month (6) later than the End Date month (4), the End Year is treated as if it were in 2016. (Steps it back to on year after the Start Date.)

usc Marshall

DateDif() Exercise B: Days Remainder

Using DateDif(Start Date, End Date, "units")

"MD"
Returns the number of remaining Days between two dates. Years and Months are ignored (sort of). "MD" is useful for finding any remaining days after whole months as you will never get an answer greater than 30.

Example Dates		Formula	Result	Descripition
A	B	=DATEDIF(B1,B2,"MD")	Returns 4 days	Treats the dates as if they were in the same year and month. So, the $5^{\text {th }}-1^{\text {st }}=4$ days.
1 Start Date:	1/1/2015			
2 End Date:	3/5/2018			
A	B	=DATEDIF(B1,B2,"MD")	Returns 13 days	Treats the dates as if they were in the same month and year (sort of). Become: 8/2/2015-7/20/2015 and returns 13.
1 Start Date:	6/20/2015			
2 End Date:	8/2/2018			

* Because the Start Date day(20) is later than the End Date day (2), the End month is treated as if it were in July. (Steps it back to one month after the start month.)

usc Marshall

	A	B
1	Start Date:	$6 / 20 / 2015$
2	End Date:	$8 / 2 / 2018$

Date Exercise 2B: Difference Between Dates

Understanding Remaining Months \& Days ("YM" \& "YD")

DateDif() Exercise B: Remainders

DateDif(StartDate,EndDate,"Units") \rightarrow "Y", "YM", and "MD"
Return in Years, Remaining Months, and Remaining Days

A		
B	C	
1	Find the Difference Between the Dates in Years, Months, \& Days	
2	Use DateDif(StartDate,EndDate,"Units")	
3		
4	Start Date:	$6 / 20 / 2015$
5	End Date:	$8 / 2 / 2018$
6		
7	Years "Y"	3
8	Months "M"	37
9	Days "D"	
10		1139
11	Remaining Months "YM"	
12	Remaining Days "MD"	1
13		13

DateDif() Exercise C: Date Text String

DateDif(StartDate,EndDate,"Units") \rightarrow Build a Text String

	A	B	C	D	E	F	G	H	I	J	K
1	Find the Difference Between the Dates in Years, Months, \& Days										
2	Use DateDif(StartDate,EndDate,"Units")										
3											
4	Start Date:	6/20/2015									
5	End Date:	8/2/2018			Employee Report						
6											
7	Years "Y"	3			8/3/2015						
8	Months "M"	37									
9	Days "D"	1139			Tommy Trojan						
10					Employment Duration: =B7\&" year(s) "\&B11\&" month(s) and "\&B12\&" Days"						
11	Remaining Months "YM"	1			Comments: ${ }_{\text {L }}$						
12	Remaining Days "MD"	13									
13											

NetWorkingDays(Start,End,[Holidays])

Ignore Weekends and Holidays (Optional)

Exercise: Ignore Weekends \& Holidays

NetWorkingDays(StartDate, EndDate, Holidays)

	A	B	C	D	E	F	G	H	I
1	Estimation of Student Worker Hours \& Gross Pay								
2	Academic Year:	2015							
3									
4	Name	Rate	Est. Hours Per Day	Start Date	End Date	Days	Working Days	Working Hours	Gross Pay
5	John	12.25	7.5	1/20/2015	5/5/2015	106	75	562.50	\$ 6,890.63
6	Susan	14.5	4	8/12/2015	12/23/2015	134	92	368.00	\$ 5,336.00
7	Tristan	10.75	4	1/20/2015	12/23/2015	338	236	944.00	\$10,148.00
8	Total							1,874.50	\$ 22,374.63
9									
10	Holiday	Date							
11	Memorial Day	5/25/2015							
12	Thanksgiving	11/26/2015							
13	Martin Luther King Jr. Day	1/19/2015							
14	President's Day	2/16/2015							
15	Labor Day	9/7/2015							
16	Columbus Day	10/12/2015							
17	Christmas	12/25/2015							
18	New Years Day	1/1/2015							
19	Independence Day	7/4/2015							
20	Veteran's Day	11/11/2015							

usc Marshall

Exercise: Ignore Weekends \& Holidays

Computing Working Hours \& Gross Pay

usc Marshall

Match()

Extract Matching Data from a Table

Display the Biweekly Payroll Number associated with the Date Worked.

usc Marshall

Match

Returns the Relative Position of what you are looking for in a Column or Row

=Match(Lookup Value, Range, Match Type)

This is what you are searching for. Lookup Value can be:

Category

- Cell Address

```
Example
Al
10
"USC"
- Value
- Formula

This is the range to search. It must be a single column or single row (ie. no blocks). Match returns the lookup value's relative position in the column or row.

Type of Search:
0 Exact Match
1 Largest value that is less than or equal to the lookup value.
-1 Smallest value that is less than or equal to the lookup value.

\section*{Exercise: Return Payroll \# for Given Dates}

\section*{Match(Lookup Value, Range, Match Type)}

\section*{Determine the Biweekly Payroll number for the Dates Worked}

C) \(1 / 1 / 2015\) is the largest number that is less than or equal to \(\mathbf{1 / 1 4 / 2 0 1 5}\) so Match() returns a 2 because it is in the second cell down in the range.

Note that this only works due to a fortunate circumstance: our biweekly numbering starts with 1 and our "Pay Period Begins" dates are ordered to match this.
In our next example we won't be so fortunate

\section*{usc Marshall}

\section*{Exercise: Return Payroll \# for Given Dates}

\section*{Use Match(Lookup Value, Range, Match Type)}

Match() will return the relative position of what you are looking for in a range.


Match returns the relative position of the largest date that is less than or equal to the Date Worked we are looking for.


\section*{Index()}

\section*{Return the item Located in the Give \(X\) and \(Y\) Coordinate}


Return the BAC Section \# based on the Date Worked and Pay Period Begins column.

\section*{usc Marshall}

\section*{Index}

Index() returns the contents of a cell within a range given its \(X\) and \(Y\) coordinate within that range.

\section*{=Index(Range , Row Position , Column Position)}

\section*{This is the Block of Cells Involved.}

This is the relative number of rows to move down.


Relative number of columns to move right.

Example:
Index(B2:F6,4,3)


Returns "Hi" because in the block it is 4 rows down and 3 columns over.

\section*{Exercise: Return BAC \# for a Given Date}

\section*{Using Match() and Index()}

We wish to return the BAC \# associated with the Date Worked
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E & F & G & \\
\hline 1 & \multicolumn{4}{|l|}{Show the BAC Section for Each Date} & & & & \\
\hline 2 & \multicolumn{2}{|l|}{Use Match \& Index()} & & & \multicolumn{4}{|r|}{USC Payroll Perio} \\
\hline 3 & & & & & & & & \\
\hline 4 & & & & & & & & \\
\hline 5 & Employee & Date Worked & BAC Section Match() and Index() & & BAC \# & \begin{tabular}{l}
Biweekly Payroil \\
Number (BW*)
\end{tabular} & Month & Pay Period Begi \\
\hline 6 & Bobby & 7/8/2015 & HC-102 & & A-555 & 1 & & 12/18/2014 \\
\hline 7 & Bobby & 1/14/2015 & A-556 & & A-556 & 42 & January & 1/1/2015 \\
\hline 8 & Marsha & 4/30/2015 & BB-63 & & A-557 & & & 1/15/2015 \\
\hline 9 & Jan & 4/1/2015 & A-562 & & A-558 & 4 & & \\
\hline 10 & Cindy & 12/14/2015 & ABC-103 & & A-559 & 5 & March & - 2 \\
\hline 11 & Peter & 12/9/2015 & ABC-103 & & A-560 & 6 & March & 2/26/2015 \\
\hline 12 & Bobby & 5/1/2015 & BB-63 & & A-561 & 7 & & 3/12/2015 \\
\hline 13 & Jan & 12/13/2015 & ABC-103 & & A-562 & 8 & April & 3/26/2015 \\
\hline 14 & Marsha & 6/30/2015 & HC-101 & & BB-62 & 9 & & 4/9/2015 \\
\hline 15 & Cindy & 3/8/2015 & A-560 & & BB-63 & 10 & & 4/23/2015 \\
\hline
\end{tabular}
a) We will use Match() to find the Pay Period Beginning date's position in the list (row position).

\section*{usc Marshall}

\section*{Exercise: Return BAC \# for a Given Date}

Index() returns the contents of a cell within a range given its \(X\) and \(Y\) coordinate within that range.

\section*{Index(Range, RowPosition, ColumnPosition)}


\section*{Match()}

We will use Match() to find the RowPostion and will our range will just be column E so our column position will be " 1 ".

\section*{Exercise: Return BAC \# for a Given Date}

Match(Search by, Range to Search, 1) and Index(Range, RowPosition, ColPostion)


Match() determines the row position of the date we are looking for. Index() then uses that and column positin 1 to return the corresponding BAC \#.

\section*{usc Marshall}

\section*{Exercise: Return BAC \# for a Given Date}

\section*{Final Results}


\section*{usc Marshall}

\section*{Using Dates in Formulas}

Manipulating Dates when Dates are Not in Cells

\section*{Date(year,month, day)}

Date() allows you to:
- Type a date in a formula rather than referencing a cell containing a date.
- Manipulate the different sections of a date (i.e. year, month, or day).

\section*{Today()}

Returns the current date. Will update when workshop recalculates or you press F9.

\section*{Exercise: Using Dates in Formulas}

\section*{Manipulating Dates when Dates are Not in Cells}


\section*{Exercise: Date in a Text String}

Both Date() and Today() can be Used in a Text String
- Use \& to "glue" different parts of a text string together.
- Place quotes" " around extra text, spaces, etc.
(i.e. anything that is not a formula or cell address).
\begin{tabular}{|c|l|c|c|}
\hline & \multicolumn{1}{|c|}{ A } & B & C \\
\hline 16 & & & \\
\hline 17 & Construct a Text String using Today() and Text() & & \\
\hline 18 & Example: Payment Due date is: 08/23/2015 & \multicolumn{2}{|c|}{ Payment Due Date is: 08/27/2015 } \\
\hline 19 & & \\
\hline
\end{tabular}
\(=\) "Payment Due Date is: "\&TODAY()+30
="Payment Due Date is: "\&TEXT(TODAY()+30,"mm/dd/yyyy")

Note you get something like: 30 days from Today is: 42239

You need to format the serial date as a date using \(\operatorname{Text}()\).

\section*{EOMonth(StartDate,Months)}

Returns the Last Day of the Month X Number of Months Before or After a Given Month. For example:

If A1 Contained 5/15/2020 then:
\begin{tabular}{lll} 
EOMonth(A 1 2) & Returns & \(7 / 31 / 2020\) \\
EOMonth(A,-3\()\) & Returns & \(2 / 29 / 2020\) \\
EOMonth(A 1,0) & Returns & \(5 / 31 / 2020\) \\
EOMonth(A 1,0)+1 & Returns & \(6 / 1 / 2020\)
\end{tabular}

Its advantage over the previous exercise is that it is often shorter.

\section*{Exercise: EOMonth(StartDate,Months)}

\section*{Find the Dates Required using EOMonth()}
\begin{tabular}{|c|c|c|c|}
\hline & A & B & C \\
\hline 1 & \multicolumn{3}{|l|}{Manipulate the Purchase Date as Requested} \\
\hline 2 & Purchase Date: & 5/15/2020 & \\
\hline 3 & & & \\
\hline 4 & \multicolumn{3}{|l|}{Use EOMonth(Start, \(\pm\) Months) to Manipulate the Purchase Date} \\
\hline 5 & Last Day of Previous Month & 4/30/2020 & =EOMONTH(B2,-1) \\
\hline 6 & Last Day of Current Month & 5/31/2020 & \(=E O M O N T H(B 2,0)\) \\
\hline 7 & Last Day of Next Month & 6/30/2020 & \(=E O M O N T H(B 2,1)\) \\
\hline 8 & & & \\
\hline 9 & \multicolumn{3}{|l|}{Use EOMonth(Start, \(\pm\) Months) to Manipulate the Purchase Date} \\
\hline 10 & First Day of Current Month & 5/1/2020 & \(=E O M O N T H(B 2,-1)+1\) \\
\hline 11 & First Day of Next Month & 6/1/2020 & =EOMONTH(B2,0)+1 \\
\hline 12 & First Day of Previous Month & 4/1/2020 & =EOMONTH(B2,-2)+1 \\
\hline 13 & The 15th of Next Month & 6/15/2020 & =EOMONTH(B2,0)+15 \\
\hline 14 & & & \\
\hline
\end{tabular}

\section*{usc Marshall}

\section*{No Due Dates on Weekends}

Change the Due Date if it Falls on a Saturday or Sunday

\section*{Weekday(Date)}

Returns the weekday as a number (1-7)

IF(Condition,True,False)
Performs one of two Possible Actions Depending whether a Condition is True of False

Choose(Index Number, Position 1,Postion2,Postion3,etc...)
Returns the Content of the Position that Matches the Index Number

\section*{Exercise: No Due Date on Weekends}

\section*{=WeekDay(Date, Optional Return Type)}

Tells you if a Date is on a Sunday, Monday, Tuesday, etc., by returning a \#

Unless you Specify an Optional Return Type, the Default Sequence is:
Sunday \(=1\)
Monday \(=2\)
Tuesday \(=3\)
Wednesday \(=4\)
Thursday \(=5\)
Friday \(=6\)
Saturday = 7

\section*{Exercise: No Due Dates on Weekends}

The Due Date is 30 Days from the Purchase Date
If Due Date falls on a Weekend (1 or 7), make the Due Date the Following Monday
Weekday() Sequence Sunday \(=1\) Monday \(=2\) Tuesday \(=3\) Wednesday = Thursday \(=5\) Friday \(=5\)
\(=6\) Saturday \(=7\)
```

=IF(C6=1,B6+31,IF(C6=7,B6+32,B6+30))

```
=CHOOSE(E6,"Sun","Mon","Tues","Wed","Thurs","Fri","Sat")

\section*{Working With Time}

\section*{Time Exercise: How Excel Stores Time}

Time Entry and How Serial Time Works
a) Type in the times as shown.
\begin{tabular}{|c|c|c|c|}
\hline & A & B & C \\
\hline 1 & Type the Tim & Exactly & own \\
\hline 2 & & & \\
\hline 3 & Type: 6:00 & 6:00 & \\
\hline 4 & Type: 6 AM & 6:00 AM & \\
\hline 5 & Type: 6 PM & 6:00 PM & \\
\hline 6 & Type: 12:00 & 12:00 & \\
\hline 7 & Type: 12 AM & 12:00 AM & \\
\hline 8 & Type: 12 PM & 12:00 PM & \\
\hline
\end{tabular}
b) Format the times as comma (or clear the formats).


\section*{Excel Uses a 24 Hour Clock}
e.g. \(11 \mathrm{am}=11,12 \mathrm{pm}=12,1 \mathrm{pm}=13,2 \mathrm{pm}=14,3 \mathrm{pm}=15\), etc.


\section*{Excel Stores Time as "Serial" Time}


Note that Excel converts to serial time for you if you type in time properly.

\section*{Serial Hours = Integer Hours \(/\) \\ 24}

Hours are converted to serial time by dividing by 24.
\[
3: 00 \mathrm{AM} \quad \rightarrow \quad 3 / 24 \rightarrow 0.125
\]

Serial Minutes = Integer Minutes / 60 / 24
Since there are 60 minutes in an hour and hours are converted to serial time by dividing by 24 , minutes are divided by 60 then 24 .

3:15 AM \(\rightarrow 3 / 24+15 / 60 / 24 \rightarrow\). 135417

Serial Seconds: Integer Seconds / 60 / 60 / 24
Since there are 60 seconds in a minute and 60 minutes in an hour and hours are converted to serial time by dividing by 24 , seconds are divided by 60 , then 60 again, then 24.

3:15:30 AM \(\rightarrow\) 3/24 \(+15 / 60 / 24+30 / 24 / 60 / 60 \rightarrow\). 135764

\section*{Durations are also Stored as Serial Time}

Hours:Minutes:Seconds

\section*{Durations}

Time durations are also stored in serial format. For example 20 hours, 15 minutes, and 30 seconds is typed as: 20:15:30

And is stored as:
\[
20 / 24+15 / 60 / 24+30 / 60 / 60 / 24=.84097
\]

Days
Days Should be entered in Hours: for example, 2 Days \& 12 hours is typed as:
48:12:00
And is stored as:
\(48 / 24+12 / 60 / 24=2.00833\)

\section*{Typing Serial Durations}

Hours:Minutes:Seconds
Correctly Entering Durations
It is recommended that you use all three sections to avoid mishaps. (If you just two sections, Excel assumes you are starting with hours.)
\begin{tabular}{lll} 
Typed As & & Interpreted As \\
15:0 & \(\rightarrow\) & 15 hours \\
0:15 & \(\rightarrow\) & 15 minutes \\
0:0:15 & \(\rightarrow\) & 15 seconds \\
15:30 & \(\rightarrow\) & 15 hours and 30 minutes \\
0:15:30 & \(\rightarrow\) & 15 minutes and 30 seconds \\
0:15:00 & \(\rightarrow\) & 15 minutes
\end{tabular}

\section*{Add and Format Time}

Time and Durations are Typed in Cells

\section*{Time Exercise: Add \& Format Time}

\section*{Add and Format Time Durations}
\begin{tabular}{|c|c|r|}
\hline & \multicolumn{1}{c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Addig Time Durations \\
2 & Type in the Date in Green & \\
3 & & \multicolumn{1}{c|}{ Time Entry } \\
4 & Arrival Date/Time & \(1 / 1 / 2013\) \\
\(22: 00\) \\
5 & Preparation Time & \\
\hline 6 & Refuel & \\
7 & Food Restock & \(3: 00\) \\
\hline 8 & Inspection & \(2: 30\) \\
9 & Total Prep Time & \\
\hline 10 & & \\
\hline 11 & Departarture Time & \\
\hline 12 & & \\
\hline
\end{tabular}
a) Type Times shown in green cells.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{1}{c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Addig Time Durations \\
2 & Type in the Date in Green \\
3 & & \multicolumn{1}{c|}{ Time Entry } \\
\hline 4 & Arrival Date/Time & \multicolumn{1}{c|}{\(1 / 1 / 2013\)} \\
\(22: 00\) \\
5 & Preparation Time & \\
\hline 6 & Refuel & \(3: 00\) \\
\hline 7 & Food Restock & \(2: 30\) \\
\hline 8 & Inspection & \(30: 00: 00\) \\
\hline 9 & Total Prep Time & \\
\hline 10 & & \(11: 30\) \\
\hline 11 & Departarture Time & \\
\hline 12 & & \\
\hline
\end{tabular}
b) In B9 Total the Prep Time: =Sum(B6:B8)
C) Format B9 as: 37:30:55 to display durations over 24:00

Total Prep Time

\section*{usc Marshall}

\section*{Time Exercise: Add and Format Time}

Adding and Formatting Time Durations
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Addig Time Durations \\
2 & Type in the Date in Green \\
3 & & \multicolumn{1}{c|}{ Time Entry } \\
\hline 4 & Arrival Date/Time & \multicolumn{1}{c|}{\(1 / 1 / 2013\) 22:00 } \\
\hline 5 & Preparation Time & \\
\hline 6 & Refuel & \(3: 00\) \\
7 & Food Restock & \(2: 30\) \\
\hline 8 & Inspection & \(30: 00: 00\) \\
\hline 9 & Total Prep Time & \(35: 30: 00\) \\
\hline 10 & & \\
\hline 11 & Departarture Time & \(1 / 3 / 139: 30 \mathrm{AM}\) \\
\hline
\end{tabular}
```

d) Get Departure Time:
=Arrival DateTime + Total Prep Time
$=\mathrm{B} 4+\mathrm{B9}$

```

\section*{Exercise: Add a Duration to Serial Time}

\section*{(Duration is in a Cell)}

Add 3 Hours and 15 Minutes to the Order Time
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & A & B & c & D & E \\
\hline 1 & \multicolumn{5}{|l|}{Adding Hours, Minutes, or Seconds to Serial Time} \\
\hline 2 & \multicolumn{5}{|l|}{Both Time and Duration are in Cells as Serial Time} \\
\hline 3 & & & & & \\
\hline 4 & \multicolumn{5}{|l|}{Add 3 Hours \& \(\mathbf{1 5}\) Minutes to Order Time} \\
\hline 5 & Duration: & 3:15:00 & & & \\
\hline 6 & & & & & \\
\hline 7 & Order Time & Due Out & & & \\
\hline 8 & 1:30 PM & 4:45 PM & =A8+B\$5 & & \\
\hline 9 & 11:59 PM & 3:14 AM & =A9+B\$5 & & \\
\hline 10 & 8:50 AM & 12:05 PM & =A10+B\$5 & & \\
\hline 11 & 1:00 AM & 4:15 AM & =A11+B\$5 & & \\
\hline 12 & 6:30 AM & 9:45 AM & \(=\mathrm{A} 12+\mathrm{B}\) \$ 5 & & \\
\hline 13 & & & & & \\
\hline
\end{tabular}

\section*{Add and Format Time}

\section*{Durations are in Formulas Rather than Cells}
- Hours \(/ 24+\) Minutes \(/ 24 / 60+\) Seconds \(/ 24 / 60 / 60\)
- Time(Hours,Minutes,Seconds)

\section*{Exercise: Add a Duration to Serial Time}

\section*{Duration in Formula rather than Cell Using Basic Math}

Add \(\mathbf{3}\) Hours \& \(\mathbf{1 5}\) Minutes to the Order Time: Time + Hours/24 + Minutes/24/60
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline 1 & \multicolumn{6}{|l|}{Adding Hours, Minutes, or Seconds to Serial Time} \\
\hline 2 & \multicolumn{6}{|l|}{Use Decimal to Serial Converstions when Time in is a Formula} \\
\hline 3 & & & & & & \\
\hline 4 & \multicolumn{6}{|l|}{Add 3 Hours \& 15 Mintues to Order Time where Duration isn't in a Cell} \\
\hline 5 & & & & & & \\
\hline 6 & Order Time & Due Out & & & & \\
\hline 7 & 1:30 PM & 4:45 PM & \(=A 7+3 / 24+15 / 24 / 60\) & & & \\
\hline 8 & 11:59 PM & 3:14 AM & \(=\mathrm{A} 8+3 / 24+15 / 24 / 60\) & & & \\
\hline 9 & 8:50 AM & 12:05 PM & \(=A 9+3 / 24+15 / 24 / 60\) & & & \\
\hline 10 & 1:00 AM & 4:15 AM & \(=A 10+3 / 24+15 / 24 / 60\) & & & \\
\hline 11 & 6:30 AM & 9:45 AM & \(=\) A \(11+3 / 24+15 / 24 / 60\) & & & \\
\hline 12 & & & & & & \\
\hline
\end{tabular}

\section*{Using Time(Hours,Minutes,Seconds)}

\section*{Time() Converts Non-Serial Numbers into Serial Time for you}



\section*{Exercise: Add a Duration to Serial Time}

\section*{Duration in Formula rather than Cell Using Time() Add \(\mathbf{3}\) Hours \& \(\mathbf{1 5}\) Mintues to the Order Time: Time(Hours,Mintues,Seconds)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E & F & G \\
\hline 1 & \multicolumn{7}{|l|}{Adding Hours, Minutes, or Seconds to Serial Time} \\
\hline 2 & \multicolumn{7}{|l|}{Use Decimal to Serial Converstions when Time in is a Formula} \\
\hline 3 & & & & & & & \\
\hline 4 & \multicolumn{7}{|l|}{Add 3 Hours \& 15 Mintues to Order Time using Time(Hours,Minutes,Seconds)} \\
\hline 5 & & & & & & & \\
\hline 6 & Order Time & Due Out & & & & & \\
\hline 7 & 1:30 PM & 4:45 PM & \(=A 7+\operatorname{TIME}(3,15,0)\) & & & & \\
\hline 8 & 11:59 PM & 3:14 AM & \(=A 8+\operatorname{TIME}(3,15,0)\) & & & & \\
\hline 9 & 8:50 AM & 12:05 PM & \(=A 9+\) TIME \((3,15,0)\) & & & & \\
\hline 10 & 1:00 AM & 4:15 AM & \(=\mathrm{A} 10+\operatorname{TIME}(3,15,0)\) & & & & \\
\hline 11 & 6:30 AM & 9:45 AM & \(=\mathrm{A} 11+\operatorname{TIME}(3,15,0)\) & & & & \\
\hline 12 & & & & & & & \\
\hline
\end{tabular}

Time(Hrs,Mins,Sec)
Time() allows you to type hours, minutes and seconds as decimal numbers and it will convert them to serial time for you.

\section*{usc Marshall}

\title{
Subtracting Time
}
(Not as Easy as you would Think)

\section*{Time Sheet Exercise 1: Subtracting Time}

Calculate Total Hours and Gross (Store Open 8am-5pm)

\section*{Duration \(=\) Time Out - Time In}


\section*{Time Sheet Exercise 2: Subtracting Time}

Calculate Total Hours and Gross (Store Open 24 Hours Per Day)


\section*{Total Hours}

Time Out - Time In + Time Out -Time In

\section*{Subtraction Issue: Start Time > Stop Time}

The Issue Occurs when:
- The serial time involved does not include a date.

AND
- The serial time being subtracted is larger than the serial number you are subtracting from.
(In other words, when the subtraction involves crossing midnight.)


How many hours between 3 am and 9 pm?
For Example:
\(3 \mathrm{am}-9 \mathrm{pm} \rightarrow\). \(125-.25=-.125\)
Excel does not recognize negative time!
(The answer should be 0.25 or 6 hours)
(FYI: 9 pm - 3 am doesn't work either.)

\section*{Solving the Subtraction Issue}

\section*{Goal:}

We stated work at 9 pm and ended work at 3 am.
How many hours did we work?

We need to know the duration in pink.


\section*{Solving the Subtraction Issue}

\section*{Goal:}

We stated work at 9 pm and ended work at 3 am. How many hours did we work?

(3:00 am converts directly to .125)

\section*{Solving the Subtraction Issue}

\section*{Goal:}

We stated work at 9 pm and ended work at 3 am. How many hours did we work?


\section*{Solving the Subtraction Issue}

The duration from
midnight (0) to 9pm is: .875


\section*{And Finally...}

\section*{Solving the Subtraction Issue}


End Time
Start Time
Duration

\section*{Subtraction Issue: Summary}

Determining Duration from Start and Stop Times


End Time > Start Time
When subtraction does not cross midnight or you are including dates with times, use this formula:

Duration \(=\) End Time \(\boldsymbol{-}\) Start Time


End Time < Start Time
When subtraction crosses midnight and you are not including dates, use this formula:

Duration \(=\) End Time +1 - Start Time

\section*{Solving the Subtraction Issue: Two Approaches}

Here are two methods of handling the Subtraction Issue (that don't involve including dates with the time):
- Using an If() Statement to Specify which formula to use: Stop Time - Start Time or Start Time + 1 - Stop Time
- Using some Tricky Properties of Time() to Solve it

\section*{Subtraction Solution: Using IF()}

\section*{If...then...Else}

IF() returns either what is in the True Section or False Section depending upon whether or not the Condition is true or false

\section*{\(=\) If(Condition, True Section,\(~ \underbrace{\text { False Section })}\) \\ The contents of this area is only returned if the Condition is true. Examples: \\ The contents of this area is only returned if the Condition is false. Examples:}

This is a statement that equates to either true or false. Examples:
- A5>=B3
- F10<100
- G4 = "Cats"
- A5>Average(B10:B15)
- OR(Al="Cats",Al="Dogs")
- "USC Rules"
- 100
- B6-10
- Average(Al:100)
- "Fight on"
- 1500
- B6+25
- Average(B1:B100)

\section*{Subtraction Solution: Using IF()}

\section*{Using an IF(Condition,True,False) Statement}


\section*{Note on Blank Cells and the IF() Statement}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F & G \\
\hline 1 & \multicolumn{7}{|l|}{Determine "Total Hours" and "Gross"} \\
\hline 2 & \multicolumn{7}{|l|}{Timesheet for 10/09/2015} \\
\hline 3 & \multicolumn{7}{|l|}{Store Open 24 Hours} \\
\hline 4 & & & & & & & \\
\hline 5 & & & \multicolumn{2}{|r|}{First Shift} & \multicolumn{2}{|l|}{Second Shift} & \\
\hline 6 & Name & Hr. Rate & Time In & Time Out & Time In & Time Out & Total Hours \\
\hline 7 & Marsha & \$ 10.00 & 8:00 AM & 11:30 AM & 1:30 PM & 4:30 PM & \(=I F(D 7<C 7, D 7+1-C 7, D 7-C 7)+I F(F 7<E 7, F 7+1-E 7, F 7-E 7)\) \\
\hline 8 & Greg & \$ 15.00 & 9:30 AM & 1:30 PM & \(\bigcirc\) & \(\longrightarrow\) & 4:00 \\
\hline 9 & Peter & \$ 16.00 & 9:00 PM & 1:00 AM & 2:00 AM & 6:00 AM & 8:00 \\
\hline 10 & Cindy & \$ 18.00 & 9:00 AM & 12:00 PM & - & \(\longrightarrow\) & 3:00 \\
\hline 11 & Jan & \$ 12.50 & 9:30 AM & 11:45 AM & 1:00 PM & 4:30 PM & 5:45 \\
\hline 12 & Bobby & \$ 13.25 & \(\bigcirc\) & \(\square\) & 9:00 PM & 3:00 AM & 6:00 \\
\hline
\end{tabular}

We must put OutTime + 1 - InTime in the True section of our if statement to avoided getting a 1 for cells that contain blank shifts. This way, should cells be blank then the condition will go to the false section (because 0 is not greater than 0) and the formula would be: 0-0=0 which would have no effect.

If however we put OutTime + 1 - InTime in the False section then anywhere we have blanks we would get a " 1 " because zero is not greater than 0 and the formula activated would be: 0+1-0 and return 1 .

\section*{usc Marshall}

\section*{Subtraction Solution: Using Time(H,M,S)}

Finding Duration based on Start and Stop Time

Time(Hours,Mintues,Seconds): Converts Non-Serial Time into Serial Time
\begin{tabular}{llllll} 
Example & \begin{tabular}{ll} 
Time \((6,30,0)\) & \(\rightarrow\) \\
Time \((18,45,0)\) & \(\rightarrow\)
\end{tabular} \(6: 30: 00 \mathrm{AM}\) & or & 0.27833 \\
& 6:45:00 PM & or & 0.78125
\end{tabular}

For Time that Spans Midnight: EndTime + 1 - StartTime
If Start Time is \(9 \mathrm{pm}(21)\) and End Time is 3 am
\(\operatorname{Time}(3+24-21,0,0) \rightarrow\) Time \((6,0,0) \rightarrow 6: 00 \mathrm{hrs}\) or 0.25

\section*{Subtraction Solution: Using Time(H,M,S)}

Finding Duration based on Start and Stop Time

But, What about Duration when Start \& Stop Times are in the same Day?
If Time( \(\mathrm{h}, \mathrm{m}, \mathrm{s}\) ) has an hour over 23, the hour is divided by 24 and just the remainder is returned.


So, we can use: Time(StopTime+1-StartTime, minutes, seconds) For Start and Stop Times in the same day or that cross midnight!

\section*{One other thing though...}
\begin{tabular}{|r|r|r|}
\hline \multicolumn{2}{|c|}{ Morning Shift } & \multicolumn{2}{c|}{ Afternoon Shift } \\
Time In & Time Out & Time In \\
Time Out \\
\hline 8:00 AM & 12:00 PM & 1:00 PM \\
\hline 9:30 AM & 11:45 AM & 1:00 PM \\
& & \(4: 30 \mathrm{PM}\) \\
\hline & & \\
\hline 3:00 AM & 7:00 AM & \\
\hline & & \\
\hline
\end{tabular}

Our In / Out entries are in Serial Time and the Time(h,m,s) function requires non-serial time. So, we need to use Hour() \& Minute() to convert the serial hours and serial minutes into non serial time so we can use Time(). Therefore, to find the duration of any shift:
\(=\) Time(Hour(TimeOut) +24 - Hour(Timeln), Minute(TimeOut)-Minute(Timeln), 0)


Extracts and calculates the hours between the two times.

Extracts and calculates the minutes between the two times.
(i.e. TimeOut + 1 - Timeln)

\section*{Subtraction Solution: Using Time()}

\section*{Using Time() to Get Duration}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F & G & & H \\
\hline 1 & \multicolumn{9}{|l|}{Determine "Total Hours" and "Gross"} \\
\hline 2 & \multicolumn{3}{|l|}{Timesheet for 10/09/2015} & & & & & & \\
\hline 3 & \multicolumn{3}{|l|}{Store Open 24 Hours} & & & & & & \\
\hline 4 & & & & & & & & & \\
\hline 5 & & & \multicolumn{2}{|r|}{First Shift} & \multicolumn{2}{|l|}{Second Shift} & & & \\
\hline 6 & Name & Hr. Rate & Time In & Time Out & Time In & Time Out & Total Hours & & ross \\
\hline 7 & Marsha & \$ 10.00 & 8:00 AM & 11:30 AM & 1:30 PM & 4:30 PM & 6:30 & \$ & 65.00 \\
\hline 8 & Greg & \$ 15.00 & 9:30 AM & 1:30 PM & & - & 4:00 & \$ & 60.00 \\
\hline 9 & Peter & \$ 16.00 & 9:00 PM & 1:00 AM & 2:00 AM & 6.00 AM & 8:00 & \$ & 128.00 \\
\hline 10 & Cindy & \$ 18.00 & 9:00 AM & 12:00 PM & & & 3:00 & \$ & 54.00 \\
\hline 11 & Jan & \$ 12.50 & 9:30 AM & 11:45 AM & 1:00/M & 4:30 PM & 5:45 & \$ & 71.88 \\
\hline 12 & Bobby & \$ 13.25 & & & 8.00 PM & 3:00 AM & 6:00 & \$ & 79.50 \\
\hline 13 & Total Tim & & & & & & 33:15:00 & \$ & 458.38 \\
\hline
\end{tabular}

\section*{Gross}

Total Hours * 24 * Hr. Rate =G7*24*B7
+ TIME(HOUR(F7)+24-HOUR(E7),MINUTE(F7)-MINUTE(E7),0)

\section*{Note on Time() and Negative Minutes}

Time(H,M,S) will Subtract any Negative Minutes from the Hours
=Time(Hour(TimeOut) + 24 - Hour(TimeIn), Minute(TimeOut)-Minute(TimeIn), 0)


3rd Pass
\(=\) Time(Hour(4), Minute(45), 0)```

